
What We’re Doing
In this tutorial, I will be

demonstrating the process of
interacting with meshes in Unity via
scripting. Why would you want to do
this? It’s because… Well… I’m not
sure, but I needed it for a project I’m
working on, so I’m assuming that you
need it too. There’s just really nothing
compared to the feeling you get
when you manually place vertices via
code.

But what are we doing?
When you complete this tutorial,

you should have a game that looks
something like the screenshot pictured
above. The idea behind the game is
to get the ball into the box. This is
performed by drawing lines on the
background for the ball to bounce off
of.

Great! I’m on board!
Hold on there. Before you start

this tutorial, there’re some things you
need to understand. Like when I put
something in bold, it means that that
word is a class name(like Transform,
or Collider, or LineRenderer). I’ll
provide links to the docs for all the
classes I put in here, so don’t worry if
you come across one you haven’t
heard before.

When I put something in italics, I
am referencing a function, like
OnMouseDown() and Update(), and
StealTheNoodles().

Regarding language, this tutorial
contains no profanity- I mean, I’ll be
using JavaScript. I will try to get C#
code put in here as well, but given
that I’m on a deadline, that might
have to come in the second edition.

Getting Started
Before I throw obfuscated code and

screenshots at you, we need to determine
how well you are acquainted with the Unity
way of doing things. Click the link in that
green box down there. If the stuff you read
there is new to you, you should probably
read that before you read this. But if you
know it all by heart, or you’re just really
brave, you can dive in right here.

Create a new project and put in a name.
I called mine BlockCreator. You should call
yours something interesting, like Fuzzy
Puppies on the Rampage.

Completed Game

Content Creation

in

Unity3D
By Lincoln Green

If you see stuff in a blue

box, it means that you

need to pay attention.

If you see stuff in a red

box, it means that there is

a common mistake lurking

in the shadows.

If you see stuff in a green

box, it means that there’s

an explanatory link or text,

like this one.

Realtime

http://technology.blurst.com/unity-basics-overview/
http://unity3d.com/support/documentation/ScriptReference/Transform.html
http://unity3d.com/support/documentation/ScriptReference/Transform.html
http://unity3d.com/support/documentation/ScriptReference/Collider.html
http://unity3d.com/support/documentation/ScriptReference/Collider.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://technology.blurst.com/unity-basics-overview/
http://technology.blurst.com/unity-basics-overview/

Everyone still alive? Good. Moving on, you will be
presented with a clean window. For my project, I’m using the
‘Wide’ layout, so if the screenshots don’t match up, it’s possible
that it’s not your fault. Now the first thing to do is set up our
camera. Since this is a 2D game, we need to set up our camera
to be orthographic. Select the ‘Main Camera’ object in the
hierarchy browser and take a look at the inspector. Turn on the
‘Orthographic’ checkbox and set the ‘Orthographic Size’ to
50. I also changed the background color of my camera to be a
light blue(as opposed to the default dark blue). Now since
we’re working in two dimensions(x and y), and the camera is
orthographic, the z variable is irrelevant for now. However, I
set mine to ’20’ to get it out of the way for the next steps. You
also do need to set the ‘Y’ rotation to 180. When you’re done,
your inspector should look similar to that screenshot.

Setting up the level
In order to provide the dragging ability of our game(drag

to create boxes), we need some way of intercepting mouse
events. Fortunately for us, the MonoBehaviour class provides
two useful functions, OnMouseUp() and OnMouseDown(). A
glance at the docs for those methods informs us that we need a collider to
receive these events. So…

Create an empty GameObject. (GameObject > Create New)
Add a BoxCollider to said GameObject. (Component > Physics > Box

Collider).
Set the scale of the GameObject you created to a very large value for

the ‘X’ and ‘Y’ axes. I used 500. Leave the ‘Z’ scale alone. Also, make
sure to set the z position of the box to -2. This step is very important, as it
keeps the gameobject from colliding with objects that are actually part of
the scene(i.e the ball and the box that don’t exist yet). In the end, your
setup should match my setup. Also feel free to name your gameobject. I
named mine ‘Level’.

Set this to 180

Set the Z position of the

gameobject to -2.

http://unity3d.com/support/documentation/ScriptReference/MonoBehaviour.html
http://unity3d.com/support/documentation/ScriptReference/MonoBehaviour.html
http://unity3d.com/support/documentation/ScriptReference/GameObject.html
http://unity3d.com/support/documentation/ScriptReference/GameObject.html
http://unity3d.com/support/documentation/ScriptReference/BoxCollider.html
http://unity3d.com/support/documentation/ScriptReference/BoxCollider.html
http://unity3d.com/support/documentation/ScriptReference/GameObject.html
http://unity3d.com/support/documentation/ScriptReference/GameObject.html

Setup a Folder System
Create three folders and name them: “Objects”, “Scripts”, and “Textures”.

Now create a new script and call it ‘Level’. This script will handle the creation
of the block for the balls to bounce off of.

Let’s Script!
Open up the ‘Level’ script in your favorite script editor. The first thing to do

is define some variables.
Code:

If you don’t understand what these variables will be used for, don’t worry -
All will be explained in due time. Now let’s write some actual code! Before we
override the MonoBehaviour methods, we need to create a method that will
grab the position of the mouse and turn it into a vector.

Code:

When you define a var, it is by

default visible in the Unity

inspector. However, if you mark

it as ‘private’, it will be hidden.

var blockHeight : float = 1.0; //how tall are the blocks
var blockMaterial : Material;

var blockPhysicMaterial : PhysicMaterial; //What kind of
physical properties do the blocks have? (i.e rubber, wood,

metal, bouncy)

private var mouseHit : Vector3; //the position of the
mouse when a button was pressed

private var dragging : boolean = false; //is the mouse
button pressed?

function MousePoint() : Vector3{
	 var ray =

GameObject.FindWithTag("MainCamera").camera.ScreenPointToR
ay(Input.mousePosition); //get the mouse position from the

Input class, and use the main camera to cast a ray
	 var hit : RaycastHit; //create a variable to store

raycast data
	 Physics.Raycast(ray, hit, 1000,

kDefaultRaycastLayers); //cast a ray
	 return hit.point; //And return the Vector3 of the

point we hit
}

A Matter of Explanation

In the first line, we create a ray

using the Camera function

ScreenPointToRay(). We then

create a RaycastHit

variable(named ‘hit’). When we do

a raycast(Physics.Raycast()) and

pass the ‘hit’ variable into it, the

‘hit’ variable will be modified to

represent the data that the

Physics.Raycast() finds. In the last

line, we simply return the vector of

the ‘hit’ variable - the vector being

the point that the raycast hit.

http://unity3d.com/support/documentation/ScriptReference/MonoBehaviour.html
http://unity3d.com/support/documentation/ScriptReference/MonoBehaviour.html
http://unity3d.com/support/documentation/ScriptReference/Camera.html
http://unity3d.com/support/documentation/ScriptReference/Camera.html
http://unity3d.com/support/documentation/ScriptReference/RaycastHit.html
http://unity3d.com/support/documentation/ScriptReference/RaycastHit.html

What's happening? We are taking the mouse position from the Input class.
But the mouse position is returned in screen coordinates, so we use the
camera to cast a ray. The point in 3D space that is returned in the ‘hit’
variable is where the mouse is.

Intercepting Mouse Events
So we have a function that will grab the mouse position and turn it into

something we can use(a Vector3). Now we need to write the code that will
actually intercept and interpret the mouse events.

So what are we doing here? We’ll start with OnMouseDown().
Remember, this method is triggered when the player clicks on the collider.
Remember when we created a box collider and scaled it up? This is the
collider that will receive the clicks. The first thing we do is store the current
mouse position(the mouse position at the time of the click) as a Vector3. We
will use this later. Next, we make sure that the z position of this vector is at 0.
We do this because we don’t want to create blocks at different z positions -
we want them to all be at 0 on the z axis.

Next, we set the ‘dragging’ variable to be true. This is so the rest of the
class will know that the player is clicking on the collider.

Now we move on to OnMouseUp(). This function is simple - all we do is
notify the rest of the class that the player is not clicking on the collider any
more.

The Update() method
We will draw our line in the Update() method. In case I forgot to mention

it, this line that we will be drawing is used to tell the player that something is
happening when he drags the mouse.

function OnMouseDown(){
	 mouseHit = MousePoint(); //Get the mouse position as a

Vector3 and store it for future use
	 mouseHit.z = 0; //We do this because we want all our

objects to be at the same position on the z axis - it's a 2D
game.

	 dragging = true; //if the mouse is down, we're dragging
}

function OnMouseUp(){

	 dragging = false; //if the mouse is up, we're not dragging
anymore

}

I am a box collider

Click!

When the player clicks, we get the

OnMouseDown() message

The player drags the mouse

Boink!

When the player stops dragging,

we get the OnMouseUp() message

Mouse Event Methods

Assuming you’ve read the blog post linked at the beginning of this
tutorial, you should have a fairly good understanding of what’s happening
here, even if you’ve never heard of the LineRenderer component before.
Basically, a LineRenderer is a component that renders lines based on values
that the programmer(you) inputs. In this instance, we are putting two Vector3s
into the LineRenderer. As you have probably figured out by this point, these
two vectors are the mouseHit variable(which is of course assigned to the
position of the mouse when the click occurred) and the current position of the
mouse(returned by MousePoint()).

There’s one last thing to do before we go back to Unity. Add this line to
the end of your script:

This tells Unity that we want a LineRenderer component on whatever
gameobject we’re tied to. More on that in a minute.

Enjoy the fruits of your labor!
Congratulations! You are now at that glorious stage of the tutorial where

you can press the big black button and see it change to the big glowy
blue button. Almost. Yeah, there’s still a little bit left to do. First, drop your
‘Level’ script onto the gameobject you created in the first part of the
tutorial(the one with the big box collider). Note that Unity autmagically adds
a LineRenderer component to the gameobject as well. That is the purpose of
the ‘@script RequireComponent(LineRenderer)’ line.

Next, check your script to make sure everything matches up:

function Update(){
	 if(dragging){ //i.e if the mouse is down...

	 	GetComponent(LineRenderer).enabled = true; //if we're
dragging, we want to draw a line

	 	GetComponent(LineRenderer).SetPosition(0, mouseHit); //set
the first point of the line renderer to the position of the

mouse when the click occurred
	 	GetComponent(LineRenderer).SetPosition(1,

MousePoint()); //grab the current position of the mouse and
make the line draw to it

	 } else { //if we've received a MouseUp event and we're not
dragging anymore, we

	 	GetComponent(LineRenderer).enabled = false; //stop drawing
the line

	 }
}

Click!

The player drags the mouse

Boink!

Update()

Every time Update() is called, we grab the mouse

position using our MousePoint() method and tell

the LineRenderer to draw it’s second vertex there.

The red line represents - well, the line we draw

using the LineRenderer.

@script RequireComponent(LineRenderer)
Note that there is no ‘;’ at the end

of this line.

http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/Mesh-tangents.html
http://unity3d.com/support/documentation/ScriptReference/Mesh-tangents.html
http://unity3d.com/support/documentation/ScriptReference/Mesh-tangents.html
http://unity3d.com/support/documentation/ScriptReference/Mesh-tangents.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html

At this point, you should be able to play your game without any errors.
Drag, and a line will magically appear, stop dragging and it will disappear.
Congratulate yourself, pat yourself on the back, go on vacation, and GET BACK
TO WORK!!!

var blockHeight : float = 1.0;
var blockMaterial : Material;

var blockPhysicMaterial : PhysicMaterial;

private var mouseHit : Vector3;
private var dragging : boolean = false;

function Update(){

	 if(dragging){
	 	GetComponent(LineRenderer).enabled = true;

	 	GetComponent(LineRenderer).SetPosition(0, mouseHit);	 	
	 	GetComponent(LineRenderer).SetPosition(1, MousePoint());

	 } else {
	 	GetComponent(LineRenderer).enabled = false;

	 }
}

function OnMouseDown(){

	 mouseHit = MousePoint();
	 mouseHit.z = 0;

	 dragging = true;
}

function OnMouseUp(){

	 dragging = false;
}

function MousePoint() : Vector3 {

	 var ray = GameObject.FindWithTag("MainCamera").camera.ScreenPointToRay(Input.mousePosition);
	 var hit : RaycastHit;

	 Physics.Raycast(ray, hit, 100, kDefaultRaycastLayers);
	 return hit.point;

}
@script RequireComponent(LineRenderer)

What your script should look like:

Part 2 - Let’s add some blocks
I’m sure it was really fun, dragging the mouse around, watching the lines come out,

but now it’s time to get back to the scripting. We need to add one more function to our
‘Level’ class/component. This function is called CreateBlock() and it takes two Vector3s
as arguments.

The purpose of this function is to construct the blocks for the ball to bounce off of.
Rather than using a prefabricated mesh, we will contruct the blocks manually, in code.
The two arguments(p1 and p2) are the beginning and end points of the blocks. To give
you some context, look back at your OnMouseUp() function. Add the specified code:

The CreateBox() function will create a block based on the coordinates of the mouse
at time of click and the mouse position at the end of the drag. Back to the CreateBox()
function:

Alright, so we’ve got a mesh, and we’ve attached it to a new gameobject. Next, we
build the mesh. The process of building a mesh involves:

1.Creating vertices(Vector3)
2.Creating UVs(Vector2)
3.Creating triangles(lists of vertex indices)
4.Assigning materials, physic materials, etc.

The mesh we are creating will consist of 6 vertices. It will not be a *real* cube per
sé, because we do not need some vertices due to working in 2D. To the right is a figure
demonstrating the layout of the vertices, and how the sphere will interact with the blocks
we’re creating.

function CreateBox(p1 : Vector3, p2 : Vector3){
}

function OnMouseUp(){
	 dragging = false; //if the mouse is up, we're not dragging anymore

	 CreateBox(mouseHit, MousePoint());
}

function CreateBox(p1 : Vector3, p2 : Vector3){
	 var newLedge : GameObject = new GameObject("Block"); //create a new

gameobject. This gameobject will hold the mesh we’re creating.
	 var newMesh : Mesh = new Mesh(); //this is the mesh we’re creating.

	 newLedge.AddComponent(MeshFilter); //this is what makes the mesh
available to the other mesh components

	 newLedge.AddComponent(MeshRenderer); //this is what makes the mesh
visible

}

Click!

Boink!

CreateBox()

When the mouse button is released,

call CreateBox() with the Click!

coordinate and the Boink! coordinate.

Creating the Vertices
The first thing to do is define some Vector3s to store the positions of the 6 vertices. Put this into your CreateBox()

function:

The only difference between the upper front and back vertices is there z position. The reason we have to have
front and back vertices is because the game is 2D, but the objects are 3D, and so the collisions are also 3D. Therefore,
we must have some thickness on the top, or the ball will not collide with our ledge. Put this code in to setup the z
position of the upper vectors.

With the upper vertices setup, we move on to the lower vertices. Once again, the lower front vertices are the same
as the upper front vertices, except that they are further down the y axis(to provide the height of the block that the
player sees). Note that we do not need to set the z position of the vertices, because we are setting the lower vertices
to be equal to the upper ones, which already have the z position set.

Now that we have the vertices defined, we just have to add them to our mesh(the newMesh variable we defined
earlier).

Creating the UVs
I do nothing fancy as far as UVs - this code is pretty much taken straight from the documentation. All this block of

code does is cycle through the vertices and create 2D coordinates for them based on their x and y positions in the 3D
coordinate system.

var topLeftFront : Vector3 = p1;
var topRightFront : Vector3 = p2;

var topLeftBack : Vector3 = p1;
var topRightBack : Vector3 = p2;

var bottomLeftFront : Vector3;
var bottomRightFront : Vector3;

topRightFront.z = 0.5;
topLeftFront.z = 0.5;

topLeftBack.z = -0.5;
topRightBack.z = -0.5;

bottomLeftFront = topLeftFront;
bottomRightFront = topRightFront;

bottomLeftFront.y -= blockHeight; //remember the block height variable
we defined?

bottomRightFront.y -= blockHeight;

newMesh.vertices = [topLeftFront, topRightFront, topLeftBack,
topRightBack, bottomLeftFront, bottomRightFront];

Creating the Triangles
Now it’s time to create the triangles. Note that we’re not really

creating anything - we’re simply telling the mesh how to connect the
dots(vertices). If you look at the documentation for the Mesh component,
you will see a ‘triangles’ variable. When you set this variable, you pass in
sets of 3 numbers. Each set of 3 numbers tells the Mesh component which
vertices to draw a triangle in. Note that you must pass in sets of three - if
you don’t, then the Mesh component might get confused, and there’s
nothing worse than a confused Mesh component.

Here’s the code:

A seemingly innocent little line of code. Now since this can be a little
hard to envision, and I have an unfilled diagram quota, I’m going to draw
an explanatory image.

And now, I will explain the explanatory image(weird, huh?). So as you’ve probably guessed, the black dots are
vertices, the little blue balloons are the names and indices of the vertices. Easy, right? Now to show the effects of that
line of code, I’ve got a series of diagrams. Except these diagrams show the triangles being filled in and which vertex
set is doing it. The blue triangles are triangles that have previously been filled in, the red triangle is the one that is
being filled in.

	 var uvs = new Vector2[newMesh.vertices.length];
 for (var i=0; i<uvs.Length; i++) {

 uvs[i] = Vector2(newMesh.vertices[i].x, newMesh.vertices[i].z);
 }

 newMesh.uv = uvs; “I decided to be bold and

adventurous, and filled in the

triangles myself, without reading your

tutorial. But now, they’re invisible!”

The problem here is that triangles are

one sided, so the chances are, you

put the vertex indices in the wrong

order. Try flipping them around and

see if that helps.

Example: if you had:

newMesh.vertices = [5, 4, 1, 2, 5, 6];

Make it:

newMesh.vertices = [1, 4, 5, 6, 5, 2];

newMesh.triangles = [5, 4, 0, 0, 1, 5, 0, 2, 3, 3, 1, 0];

TopLeftFront(0)

BottomLeftFront(4)

TopLeftBack(2)

BottomRightFront(5)

TopRightFront(1)

TopRightFront(3)

TopLeftFront(0)

BottomLeftFront(4)

TopLeftBack(2)

BottomRightFront(5)

TopRightFront(1)

TopRightFront(3)Set: (5, 4, 0)

http://unity3d.com/support/documentation/ScriptReference/Mesh.html
http://unity3d.com/support/documentation/ScriptReference/Mesh.html
http://unity3d.com/support/documentation/ScriptReference/Mesh.html
http://unity3d.com/support/documentation/ScriptReference/Mesh.html
http://unity3d.com/support/documentation/ScriptReference/Mesh.html
http://unity3d.com/support/documentation/ScriptReference/Mesh.html
http://unity3d.com/support/documentation/ScriptReference/Mesh.html
http://unity3d.com/support/documentation/ScriptReference/Mesh.html

Pretty cool, huh? Now there’s one last little itty bitty piece of code you have to type in. Basically, we have to tell
our shader how to light our object.

All we’ve got left to do now as far as creating boxes is to tie everything together. We need to tell our ‘newLedge’
gameobject what its mesh is, give it a material, a physic material, and a collider.

Remember the blockMaterial and blockPhysicMaterial we defined a while ago? Here’s where those two variables
come in. Note that we check to see if they exist before using them.

Now if you’ve correctly typed in all your
code and saved your file, you should be
able to jump back to Unity and hit the play
button. See the block world unfold before
your very eyes… Power! Glory! HONOR!!!

Power, glory, and honor aside, the
blocks are kind of ugly at the moment. Don’t
worry about that - we’ll fix that in the next
section of this tutorial, “Spitting on Your
App”. No wait, that should be “Adding Spit and Polish to Your Game.”

TopLeftFront(0)

BottomLeftFront(4)

TopLeftBack(2)

BottomRightFront(5)

TopRightFront(1)

TopRightFront(3)Set: (0, 1, 5)

TopLeftFront(0)

BottomLeftFront(4)

TopLeftBack(2)

BottomRightFront(5)

TopRightFront(1)

TopRightFront(3)Set: (0, 2, 3)

TopLeftFront(0)

BottomLeftFront(4)

TopLeftBack(2)

BottomRightFront(5)

TopRightFront(1)

TopRightFront(3)Set: (3, 1, 0)

newLedge.GetComponent(MeshFilter).mesh = newMesh;
if(blockMaterial) newLedge.renderer.material = blockMaterial;

newLedge.AddComponent(MeshCollider);
if(blockPhysicMaterial) newLedge.GetComponent(MeshCollider).material = blockPhysicMaterial;

newMesh.RecalculateNormals();

Make sure to save your Unity

scene file! When saving,

name it ‘Level’. If you don’t,

there may be complications

further along in the tutorial.
Finished product

Pa
rt

2
HA! LOOK AT
THAT FUNNY
ROTATED TEXT!

Creating Gameplay	 and Adding (some) Polish

You have come far…
Welcome to Part 2 of the BinkWorks

realtime content generation in Unity3D
tutorial. In the last section, you learned
how to generate blocks for a ball to
bounce off of. In this section, we’re going
to… add the ball! Now if you remember,
the objective is to bounce a ball into a
box. So we will add a ball, a box, and a
playing area. We will also add a bit of
polish. This section should not take as
long as the first, as there’s less scripting
and more setup in Unity.

What happens in this section
In this section, we will:
1. Give the player the ability to win
2. Add a visible playing area
3. Add some (admittedly kind of

awful) art.

First step: Download Files
In this section we will have to make

use of some custom meshes. Rather than
making you do your own work, I’ve done
it for you. Ain’t I great? Anyway,
download the stuff from this
link.…You’re done? Good.
Now unzip it and open up the
Unity asset package(double
click it in the Finder). Make
sure that your ‘Block Creator’
or ‘Fuzzy Puppies’ or
‘Whatever you named it’
project is open. If it is not, then
the assets will not be added.
You will be presented with a
dialog similar to the one on
the right. Make sure all the
items are checked and click
the ‘Import…’ button. The
assets should now be added to
your project, resulting in…

This is what your scene should look like at
this point. If it’s not as perfect as this - don’t
worry. It’s hard to be as perfect as we are.
‘We’ referring to the collective BinkWorks
team members.

http://www.binkworks.com/files/BlockCreatorStuff.unityPackage.zip
http://www.binkworks.com/files/BlockCreatorStuff.unityPackage.zip
http://www.binkworks.com/files/BlockCreatorStuff.unityPackage.zip
http://www.binkworks.com/files/BlockCreatorStuff.unityPackage.zip

…This window. As an explanation, I’ve put together a table of the included assets and their purpose(s).

Asset Purpose Image

Ball This is a Unity prefab. When dragged into your project, it
is the ball that bounces around.

Bounds This is a mesh that determines the playing field of the
game. You can make your own, if you’re adventurous.

Box This is the box that the ball must get into on order for the
player to win.

PrefabBlock This is a prefab. When dropped into your project, it will
produce a block, much like the blocks we create when we
drag the mouse. One usage for this object would be to
create a ledge for the Box to sit on.

Alright, so we’ve got our objects. Now it’s time to put together a level. First, drag the ‘Bounds’ object into your
level, and set its position to (0, 0, 0). Also, make sure it has a MeshCollider component attached to it. Now remember
that big box collider we set up a while ago? You’ll need to change the scale of that object to match the rectangle
defined by the bounds mesh. Otherwise, the player will be able to create ledges outside of the playing area, which
really makes no sense at all. Take a look at the screenshots below for an example of what you should be seeing.

Check out all the assets that
have been added!

Import Settings…

When you select a mesh in the

‘Project’ tab, the Unity inspector

changes to reveal a section

labeled ‘Import Settings’. This

panel has many useful features,

including a ‘Generate Colliders’

option. Turn this on, and when

you drag your mesh into the

level, Unity will automatically

add a mesh collider to the

object.

http://unity3d.com/support/documentation/ScriptReference/MeshCollider.html
http://unity3d.com/support/documentation/ScriptReference/MeshCollider.html

Next up, we need to put the ball into the scene. Just drag the
‘Ball’ prefab into the ‘Hierarchy’ panel. Make sure that the Z
position is at 0.

We stop at this point to let you see the game in action. Go
ahead, press the play button, make some ramps for the ball to
bounce off of, exult in your newfound power.

Now before we continue, let’s give our stuff some texture. The texture for the ‘Bounds’ object is already assigned,
but we need to assign the textures for the ledges. To do this, select the ‘Level’ object(the object with the box collider).
In the inspector, there is a variable called ‘Block Material’. Drag the ‘Block’ material(located in the ‘Materials’ folder)
from the ‘Project’ pane into the ‘Block material’ variable.

These scale settings place

the box directly inside

the bounds mesh, so you

can’t click on the bounds

mesh either.

Regarding Size…

If the game is a little small, you can go

to the inspector for the Main Camera

object and set the ‘Orthographic Size’

to a smaller value. The odd thing about

the ‘Orthographic Size’ variable is that

the smaller you make it, the larger the

objects look.

The ball

The ledges

Now even though we have assigned the textures and materials, they still don’t
show up because the scene doesn’t have a light source. Create a new directional
light(GameObject > Create Other > Directional Light). Change the rotation to
whatever you see fit. I’ve set my rotation to: (X: 45, Y: 180, Z:0). Now if you run your
game, your textures should show up on the objects. However, there’s still a problem. If
you look at the screenshot to the right, you’ll see that when we drag, we get a large,
ugly gray line. To make this look better, select the
‘Level’ object and take a look at the inspector for
the LineRenderer component that’s attached to it.
We’re going to set the ‘Start Width’ and ‘End
Width’ variables to be a little bit thinner. I set
mine to 0.3. Note that I have circled the
variables we are editing in the next few
steps.

Our line is still pretty ugly. Let’s change
its color. Create a new material (Assets >
Create > Material). Name the new material
‘Line’. You can pretty much do anything
you want with this material - I’ve just made
mine a solid black thing. When you’re
done playing around with your material,
go back to the ‘Level’ object inspector and
put it into the ‘Element 0’ slot of
the ‘Materials’ array. Alright, I
admit it, it’s still pretty ugly. But
this tutorial isn’t about the art,
it’s about the technical side of
things, right? Right?

Alright, so we’ve added the textures…
Let’s put our box into the game. Drag out the ‘Box’ object and place it

somewhere in the play area. Remember to make sure the Z position is
at 0. Also, set the Z scale to 0.5. The ‘Box’ is as long as it is wide, so
if you don’t set the Z scale to 0.5, it will be colliding with the box
collider that you put on the ‘Level’
object. If you have not placed the
box at the bottom of the play area,
you will probably want to drag out a
‘PrefabBlock’ and place it beneath
your box, since this game is supposed
to be realistic(Har har har) and we
don’t want things floating around.
You also may want to place the Ball
somewhere other than the middle of
the screen. I’ve included a screenshot
of my setup and inspector settings.

My setup

http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html
http://unity3d.com/support/documentation/ScriptReference/LineRenderer.html

Back to the scripts
Alright, so we’ve got the ball, we’ve got the box, we’ve got the ball in the box. Now what? There’s a series of

steps here, so I’ve got some numbered screenshots for you to take a look at.
First thing to do is create an empty gameobject (GameObject > Create Empty). Call your new gameobject ‘Finish’.

Got that? Great. Now add a BoxCollider, and set the ‘isTrigger’ variable to be true. Now what you’re going to do is
drag the ‘Finish’ object onto the ‘Box’ object. Now, when you move the ‘Box’ object, the ‘Finish’ object moves with it.
Set the position of the ‘Finish’ object to (0,0,0). By doing this, you will make sure that the ‘Finish’ object is always
inside the ‘Box’ object. Also, set the scale to (4,1,2) as shown in the screenshots. Note that I’ve also tagged the ‘Finish’
object as ‘GameController’.

Now what was the point of that? We have to have a method of
determining if the ball is in the box. We can’t use the collider of the
‘Box’ because if we did that, then the player would win if the ball
bounced off the outside of the box. So instead, we added a new
collider, made it a trigger(so the other colliders would ignore it) and
placed inside the box. Now we need to create a script that will
respond to the trigger events sent by our new collider. Add a script
to your ‘Scripts’ folder and call it GameController. Add it to the
‘Finish’ gameobject you created(The one with the trigger). Now
before we move on to scripting, let’s create a prefab for our ‘Box’
object. After all, we don’t want to go through this setup mess for
every level we make.

1. Create a new prefab and name it ‘Finish’. (Assets > Create >
Prefab)
2. Place it in your ‘Objects’ folder.
3. Drag the ‘Box’ object from your ‘Hierarchy’ pane onto the

prefab you just created.

Create the ‘Finish’ object
Add a Box Collider

Parent the ‘Box’ object to the ‘Finish’ object and set the position to (0,0,0) and the scale to (4,1,2)

Triggers

Triggers are basically colliders that

send messages, but don’t collide.

When another collider enters a trigger,

the gameobject that the trigger is

attached to receives a

OnTriggerEnter() message. For a

detailed explanation of triggers, visit

the Blurst technology blog.

http://unity3d.com/support/documentation/ScriptReference/BoxCollider.html
http://unity3d.com/support/documentation/ScriptReference/BoxCollider.html
http://technology.blurst.com/unity-physics-trigger-collider-examples/
http://technology.blurst.com/unity-physics-trigger-collider-examples/

We’re done in Unity for now, so open up your ‘GameController’ script and define some variables.

To understand what the first variable is for, you need look no further than Application.LoadLevel(). What this nifty
little function does is… load a level! The level it loads is based on the string you feed it. Which is why I also told you to
name your scene ‘Level’. Otherwise, your level wouldn’t load. Of course, you’re smart enough to figure out why and fix
it, but consistency is awesome. Moving on, the purpose of the ‘nextLevel’ variable is to provide a level for Application to
load when the player wins. More on that later.

‘loadDelay’ is just a variable to determine how long it takes for us to load the level after the player wins. This is in
case you want to play some fireworks or something. Without this variable, the next level would start to load instantly, and
there would be no fireworks.

‘winObject’ is once again for the fireworks. If you assign this variable, the script we’re writing will create a copy of
the gameobject you assigned.

The private variable, ‘hasWon’ is a boolean that determines if we’ve already one. This is to prevent code from being
executed twice.

Alright, we’ve got our variables, let’s use them.

There are a couple new methods here that are pretty self-explanatory, but it boosts my ego to explain things, so:
1. Instantiate() creates a copy of the gameobject you pass in(winObject), at the position you pass in(Vector3.zero), at

the rotation you pass in(Quaternion.Identity).
2. WaitForSeconds() delays execution of the function it’s in until the seconds have passed. Note that it can’t be run in

the Update() methods because you can’t delay execution of Update().

So what we’re doing in the OnTriggerEnter() function is:
1.Checking if the ball(the gameobject tagged ‘Player’) has collided with us
2. If it has, and we haven’t already won, call the Win() function.

And in the Win() function:
1. Telling the rest of the class we’ve won, so we don’t get called again
2. Creating the fireworks(or whatever you put in there)

function OnTriggerEnter(col : Collider){
	 if(col.gameObject.CompareTag("Player")){

	 	 if(!hasWon) Win(); //don’t call Win() if we’ve already won!
	 }	

}

function Win(){
	 hasWon = true; //notify the rest of the class

	 /*Create a winObject if it exists.*/
	 if(winObject) Instantiate(winObject, transform.position, Quaternion.identity.

	 yield WaitForSeconds(loadDelay);
	 Application.LoadLevel(nextLevel);

}

var nextLevel : String;
var loadDelay : float;

var winObject : GameObject;
private var hasWon : boolean;

http://unity3d.com/support/documentation/ScriptReference/Application.html
http://unity3d.com/support/documentation/ScriptReference/Application.html

3. Waiting a while, so the fireworks can explode.
4. Loading the next level based on the string that we have.

Pretty simple, huh? Now before we go back to Unity, let’s go ahead and add a GUI button. The purpose of this
button is to restart the game in case the ball gets stuck.

We will accomplish using the Unity GUI system. Add some code to your file:

The OnGUI function is a method that you override to place
GUI elements. GUILayout is a class that creates GUI elements
and assigns their position automatically based
on the string that you pass in. I won’t be
explaining the GUI system in depth here - if you
want to read more about that, visit the Unity site.

We’re finished with scripting for now - save
your file and get back to Unity.

Now there are a couple things we need to
do before we can run our game and see the
level loading in action. The first thing to do is
select the ‘Ball’ prefab, and in the inspector,
give it the tag ‘Player’. The copy of the ball that
is in your scene should update to reflect your changes. Now at the moment, the game is kind of boring, because the
ball moves pretty slowly. We’re going to add a script that will allow the player to give the ball a “kick” so to speak. It
will also constrain the Z position of the ball to keep it from going off into outer space. So, create a new script, and
name it ‘Ball’. Add this code:

function OnGUI(){
	 if(GUILayout.Button("Restart")){

	 	 Restart();
	 }

}

function Restart(){
	 Application.LoadLevel(Application.loadedLevelName);

}

var jumpMultiplier : float = 20;
var maxVelocity : float = 20.0;

private var collisionCount : int = 0;

function FixedUpdate () {
	 transform.position.z = 0;

	 if(Input.GetButton("Jump") && (collisionCount > 0) && (rigidbody.velocity.y < maxVelocity)){
	 	 rigidbody.AddForce(Vector3.up * jumpMultiplier, ForceMode.VelocityChange);

	 }
}

http://unity3d.com/support/documentation/ScriptReference/Application.html
http://unity3d.com/support/documentation/ScriptReference/Application.html

The ‘jumpMultiplier’ variable determines how high the ball will go when the user presses the space bar. The
‘maxVelocity’ variable will make sure that we don’t get the ball going so fast that it goes through things.

The purpose of the ‘collisionCount’ variable is to make sure that the player cannot jump without the ball sitting on
a collider. Without the ‘collisionCount’ the player would be able to fly - which would be kind of cool, but…

Make sure you save your scene before continuing.

Creating a Menu
Now what we’re going to do is create a main menu for our

game. This will consist of adding some text and a couple of
buttons. Create a new scene - call it ‘Menu’. Create an empty
gameobject and call it ‘MenuController’. Add a new script to
your ‘Scripts’ folder and call it ‘Menu’. Add the ‘Menu’ script to
your ‘MenuController’ object.

Add this code:

If it’s a bit impenetrable, don’t worry. We’ll walk through it line by line.
1. This variable is used to determine what level to load when the player presses the ‘Play’ button.
2. This line will create a button labeled “Play”, and tell us whether or not the button is being clicked by the player.
3. If the “Play” button is pressed, we load the first level(based on the variable we defined earlier).
4. 5. Create a button labeled “Quit” and determine whether or not it is pressed.
5. If it is pressed, then call the Application function Quit().

We are now finished with the scripting side of things. Switch back to Unity and run your game. You should see
your buttons. At this point, you will probably get some kind of warning saying that ‘the level can’t be loaded because

function OnCollisionEnter(col : Collision){
	 collisionCount++;

}

function OnCollisionExit(col : Collision){
	 collisionCount--;	

}

var firstlevel : String; //1

function OnGUI () {
	 if(GUI.Button(Rect(Screen.width / 2 - 64, Screen.height / 2, 128, 32), "Play")){ //2

	 	Application.LoadLevel(firstLevel); //3
	 }

	 if(GUI.Button(Rect(Screen.width / 2 - 64, Screen.height / 2 + 32, 128, 32), "Quit")){ //4
	 	 Application.Quit(); //5

	 }
}

it isn’t added to the build settings’. Let’s fix that. Go to the meu bar and click “File
> Build Settings”. A dialog similar to the one at the right should pop up. Drag your
two scenes (“Menu” and “Level”) into the ‘Scenes to build’ box. Make sure that the
“Menu” level is at index 0 and the “Level” scene is at index 1. At this point, you
probably still can’t load the level because you haven’t told the ‘MenuController’
object which level to load. Select the ‘MenuController’ object and in the Unity
Inspector, look for the ‘Menu’ script. For the ‘firstLevel’
variable, type in “Level”(the name of your ball/box scene).

Now, you should be able to run your game and load the level. Click the ‘Play’ button and the level loads. Also
note that you can restart the game with the ‘Restart’ button.

Back to the menu. Create a new GUIText
object(GameObject > Create > GUIText). Put
your game name in there, and position it using
the ‘Pixel Offset’ variables as you see fit. Now
if you look at your new GUIText in the ‘Game’
pane, it looks pretty small. To make it
bigger, look in the ‘Project’ pane. In the
‘Standard Assets’ folder, there is a
‘Fonts’ folder. Inside this folder, you will
see a font called ‘Courier’. Drag this
font onto the ‘Font’ variable of the
GUIText you’ve created. Then, select the
‘Courier’ font back in the ‘Project’ pane.
Look at the “Import Settings” in the Unity
inspector, and change the font size to a larger
value. When you’re done, be sure to click the
‘Apply’ button. I’ve set my font to size ‘48’.

In the GUI Text settings, I’ve set the ‘Pixel
Offset X’ to -160 and the ‘Pixel Offset Y’ to 80.

You also might want to change the
background color of the camera.

Now we will add some instructions for the
player. Create another GUI Text, and set its text to
something similar to:

“Try to get the ball in the box by creating
ledges.

Create ledges by dragging on the
background.

If your ball stops moving, you can use the
space bar to jump”.

Obviously, that’s pretty boring, but that’s why I said ‘something
similar’. To add the line breaks, select where you want to add a line
break and hit ‘Option(Alt) + Enter’. The result:

If you don’t care to use the

‘Courier’ font, you can just drop in

your own font and follow the steps.

Select the GUI Text

See the ‘Font’ variable? Drag the ‘Courier’ font into it

Change the font size.

Select the Courier font

http://unity3d.com/support/documentation/ScriptReference/GUIText.html
http://unity3d.com/support/documentation/ScriptReference/GUIText.html
http://unity3d.com/support/documentation/ScriptReference/GUIText.html
http://unity3d.com/support/documentation/ScriptReference/GUIText.html
http://unity3d.com/support/documentation/ScriptReference/GUIText.html
http://unity3d.com/support/documentation/ScriptReference/GUIText.html

Polishing it off
There are a couple more things in the “Level” scene that we need to fix. Save the “Menu” scene and open up the

“Level” scene. The first thing to do is make the level winnable. Select the ‘Finish’ object(it’s a child of the Box), and in
the inspector, set the ‘Next Level’ variable to “Menu”. This will result in the game loading the menu when the player
wins. You can also create a prefab to use for the ‘winObject’. I’ve used the ‘explosion’ particle emitter from the
‘Standard Assets’ folder. You can also set the ‘loadDelay’ variable.

Fixing the Bugs
I congratulate you! You have come far. Again. What you have here could be the start of a game. Add some decent

art, add lots of cool levels, powerups, and physic puzzles, figure out a way to make the ball move faster,
and… and… and…

Well, I won’t help you out with that stuff, but before we close this tutorial, we should probably fix some of the bugs
in the system. In case you haven’t discovered them yourself, a couple of the big ones are:

1. Dragging right to left rather than left to right doesn’t do anything
2. Dragging outside of the play area makes our line go wacky.

The reason for the first is that dragging from right to left messes up our CreateBox() function, and so the triangles
are drawn backwards. The second problem is due to us using raycasting to capture the mouse position. When you drag
outside the play area, the raycast doesn’t hit any colliders, so we can’t get the mouse position.

Fixing the first problem is fairly simple. Open up the “Level” script and navigate to the OnMouseUp() function. The
current code simply puts the ‘mouseHit’ variable in slot 1, and the MousePoint() vector into slot 2. To fix our bug, we
will change this function to put the variable with the smallest x position into slot 1, and the variable with the largest x
position into slot 2. Change your OnMouseUp() function to:

The second problem is a wee bit more complex, and requires the use of another variable. Back at the top of your
file, where you defined your private variables, add another:

This variable will store the position of the mouse the last time we could get it. So when the mouse moves out of the
playing area, this variable will store the position it was at before it moved out of the area.

function OnMouseUp(){
	 dragging = false;

	 var currentMousePos : Vector3 = MousePoint();
	 if(mouseHit.x > currentMousePos.x){

	 	 	 CreateBox(mouseHit, currentMousePos);
	 } else if(mouseHit.x < currentMousePos.x){

	 	 	 CreateBox(currentMousePos, mouseHit);
	 }

}

private var lastMousePosition : Vector3;

function MousePoint() : Vector3 {
	 var ray = GameObject.FindWithTag("MainCamera").camera.ScreenPointToRay(Input.mousePosition);

	 var hit : RaycastHit;

The code logic:
1. If we can cast against the collider, update the mouse position.
2. Otherwise, do nothing.
3. Return the mouse position

Extending the Game
Don’t worry, this tutorial is nearly over. But before we end, I should mention the topic of extensibility. Currently,

the scripts we have created are pretty general purpose and reusable throughout the game. To create a level, all you
have to do is drag the ‘Ball’ prefab into your scene, create a gameobject with your ‘Level’ script and a collider of
some sort, and add drop the ‘Box’ prefab somewhere in the scene. Easy enough, right? Right.

However, one thing that is not easily workable with our setup is level layouts that don’t fit inside the current
camera viewport. So we’re going to do one last thing here: write a camera script for our game. This script will enable
our camera to zoom in and out and track the ball. Note that unless you make your playing area bigger, this script will
have no purpose in the level you’ve already created, because you can already see everything. I will not walk you
through the creation of a new level, so if you’re going to use this script, you will have to create your own level that is
big enough to warrant the usage of this script. Alternatively, you can download the example project(check page 23 of
this tutorial), which includes a larger level.

Let’s get started. You know the drill: Create a new script(Assets > Create > JavaScript) and put it in your scripts
folder. I named my script “SmoothFollowXY” to reflect the 2D nature of the script. The first thing I do is define some
variables:

How will this script work? What we’ll do is track the position of the target. Zoom will be controlled by the scroll
wheel, and to accomplish it, we will edit the ‘Orthographic Size’ variable of the camera.

Now for the actual code:

	 if(Physics.Raycast(ray, hit, 100, kDefaultRaycastLayers)){
	 	 lastMousePosition = hit.point;

	 }
	 return lastMousePosition;

}

var target : Transform;
var speed : float = 3.0; //how fast should we move to catch up with the target

var zoomSpeed : float = 1.5; //how fast is zooming
var maxZoom : float = 1.0;

var minZoom : float = 35.0;
var threshold : float = 20.0;

private var wantedPosition : Vector3;

function LateUpdate () {
	 if(!target) return;

	 camera.orthographicSize -= Input.GetAxis("Mouse ScrollWheel") * zoomSpeed; //read the input
from the scrollwheel and multiply it by the zoomSpeed variable.

	 camera.orthographicSize = Mathf.Max(camera.orthographicSize, maxZoom);
	 camera.orthographicSize = Mathf.Min(camera.orthographicSize, minZoom);

In the first line, we make sure we have a target. If we don’t, then
we simply return without doing anything. After all, if there’s no target,
then it would be kind of useless to execute our code. The next three
lines handle zooming. We read the input from the scrollwheel and
multiply it by our ‘zoomSpeed’ variable. The Mathf.Max() and
Mathf.Min() return the larger and smaller of two values, respectively.
This will prevent the camera’s orthographic size variable from getting
above or below the max and min zoom variables.

The next two lines will calculate the position we’re trying to get to. We perform the operation because we don’t
want to change the Z position of the camera.

The last line checks to see if the distance between us and our target is bigger than the threshold, and, if it is, we
smoothly move the camera toward the target. Note the multiplication by Time.deltaTime. Without this multiplication,
our movement would be based on how fast the player’s computer is, rather than time. For a more detailed
explanation, take a look at the Unity docs.

Let’s try it out! Save your scene and hop back over to Unity. Place the script on your ‘Main Camera’ object, set the
‘Ball’ object as the target, and run the game. You’ll have to do a bit of toying with the variables in the Unity inspector,
and you probably won’t even want to use the camera script for this level, but you now have a script that you can use
on a bigger level.

The End
Congratulations! You have reached the end of the first BinkWorks Unity3D tutorial. Our

project is downloadable from http://www.binkworks.com/files/BlockCreator.zip. The
example project includes the complete and commented source files, art, and scenes. It
also includes a couple of extra levels, to give you something of an idea of what a full-

blown game might be like.
This being the first edition of a first tutorial, it is probably full of mistakes, typos, and
unclarities. If you are so unfortunate as to discover one of the above, please email me

at lincolngreen@binkworks.com and let me know. Thanks go out to the Unity community,
for their help in the writing of this piece.

It is customary to use LateUpdate() in

camera scripts because, as the name

implies, it is executed after Update().

	
	 wantedPosition = target.position;

	 wantedPosition.z = transform.position.z; //Make sure we're not messing with the z-axis...
	

	 	 if(Vector3.Distance(transform.position, wantedPosition) > threshold){ //if the
target moved out of range

	 	 	 transform.position = Vector3.Slerp(transform.position,
wantedPosition, speed * Time.deltaTime);

	 	 }
}

Congratulations!

http://unity3d.com/support/documentation/ScriptReference/Time.html
http://unity3d.com/support/documentation/ScriptReference/Time.html
http://www.binkworks.com/files/BlockCreator.zip
http://www.binkworks.com/files/BlockCreator.zip
mailto:lincolngreen@binkworks.com
mailto:lincolngreen@binkworks.com

